

UGANDA INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY END OF SEMESTER ONE EXAMINATIONS

ACADEMIC YEAR 2024/2025

DEPARTMENT: ICT

SEMESTER: ONE

PROGRAMME(S): DIPLOMA IN COMPUTER SCIENCE (DCS)

YEAR OF STUDY: ONE

COURSE: OPERATING SYSTEMS

COURSE CODE : CSC112

DATE: SUNDAY 15TH, DECEMBER 2024

TIME: 9:00 PM - 12:00 NOON

DURATION: 3 HOURS

INSTRUCTIONS:

- (i) This paper contains two Sections: A (40 marks) & B (60 marks).
- (ii) Attempt ALL questions in Section A, and ONLY THREE questions in Section B.
- (iii) All questions in Section B carry equal marks.
- (iv) Credit will be given for use of relevant examples and illustrations.
- (v) Begin each number in Section B on a new page of the answer sheet.
- (vi) DO NOT write on this question paper.

SECTION A [40 MARKS]

Attempt **ALL** the Questions in this Section.

a)	Define the term file as used in operating systems.	(2 marks)	
b)	Briefly describe random access file access method.	(2 marks)	
c)	Define a deadlock as used in operating systems.	(2 marks)	
d)	List any two operating systems used on mobile phones.	(2 marks)	
e)	List four resources used by an operating system.	(4 marks)	
f)	Distinguish between authentication and authorization.	(4 marks)	
g)	Describe any four functions performed by the operating system.	(4 marks)	
h)	Distinguish Long Term Scheduling from Short Term Scheduling.	(4 marks)	
i)	Define virtual memory.	(2 marks)	
j)	Define file management as used in operating systems.	(2 marks)	
k)	What is swapping as used in memory management?	(2 marks)	
l) '	What is the difference between internal memory fragmentation and external memory		
	fragmentation?	(4 marks)	
m)	Define a device driver as used in operating system.	(2 marks)	
n)	n) Outline any two differences between pre-emptive scheduling and non-preemptive		
	scheduling.	(4 marks)	

SECTION B [60 MARKS]

Attempt **ONLY THREE** Questions in this Section.

Question 1

a)	Describe any four functions of file management.	(8 marks)
b)	Describe any four functions performed by the operating system.	(8 marks)
c)	Describe any three process states	(6 marks)

Question 2

- a) Define the term a *process* as used in operating systems.
 b) Describe the five-state transition model
 (2 marks)
 (10 marks)
- c) Given three processes P₁, P₂ and P₃ with burst times indicated against each as shown below:

Process	Burst Time
P ₁	24
P_2	3
P_3	3

Suppose the processes arrive in the order P_2 , P_1 and P_3 . Determine the average waiting time if the scheduling follows:

OPERATING SYSTEMS

i) First Come First Served Algorithmii) Round Robin Algorithm with quantum time of 4.	(4 marks) (4 marks)
 Question 3 a) Describe any three memory placement algorithms. b) Describe the difference between contiguous memory allocation and fix memory allocation schemes. c) Identify and describe the Components of the I/O Subsystem d) Define segmentation as used in memory management. 	(6 marks) ed partition (4 marks) (8 marks) (2 marks)
 Question 4 a) Describe any three conditions necessary for deadlocks to occur. b) Describe any four strategies for dealing with deadlocks c) Define each of the terms; latency, transfer time and seek time as applied 	(6 marks) (8 marks) ed to hard disk (6 marks)
 Question 5 a) Briefly explain the following types of devices i) Dedicated Devices ii) Shared Devices and iii) Virtual Devices 	(2 marks @)
 b) Explain three factors that determine Access Time. c) Describe the following terms as used with hard disks: i) Disk platter ii) Disk arm iii) Track iv) Sector 	(6 marks) (2 marks) (2 marks) (2 marks) (2 marks)
 Question 6 a) Describe the components of the I/O Subsystem b) State three conditions that may result into Switching Process c) Distinguish between contiguous and non-contiguous memory 	(8 marks) (6 marks) (4 marks)

END