UGANDA INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY END OF SEMESTER ONE EXAMINATIONS ## ACADEMIC YEAR 2024/2025 DEPARTMENT: ICT SEMESTER: ONE PROGRAMME(S): DIPLOMA IN COMPUTER SCIENCE (DCS) YEAR OF STUDY: ONE COURSE: OPERATING SYSTEMS COURSE CODE : CSC112 DATE: SUNDAY 15TH, DECEMBER 2024 TIME: 9:00 PM - 12:00 NOON DURATION: 3 HOURS #### INSTRUCTIONS: - (i) This paper contains two Sections: A (40 marks) & B (60 marks). - (ii) Attempt ALL questions in Section A, and ONLY THREE questions in Section B. - (iii) All questions in Section B carry equal marks. - (iv) Credit will be given for use of relevant examples and illustrations. - (v) Begin each number in Section B on a new page of the answer sheet. - (vi) DO NOT write on this question paper. ### **SECTION A [40 MARKS]** Attempt **ALL** the Questions in this Section. | a) | Define the term file as used in operating systems. | (2 marks) | | |------|--|-----------|--| | b) | Briefly describe random access file access method. | (2 marks) | | | c) | Define a deadlock as used in operating systems. | (2 marks) | | | d) | List any two operating systems used on mobile phones. | (2 marks) | | | e) | List four resources used by an operating system. | (4 marks) | | | f) | Distinguish between authentication and authorization. | (4 marks) | | | g) | Describe any four functions performed by the operating system. | (4 marks) | | | h) | Distinguish Long Term Scheduling from Short Term Scheduling. | (4 marks) | | | i) | Define virtual memory. | (2 marks) | | | j) | Define file management as used in operating systems. | (2 marks) | | | k) | What is swapping as used in memory management? | (2 marks) | | | l) ' | What is the difference between internal memory fragmentation and external memory | | | | | fragmentation? | (4 marks) | | | m) | Define a device driver as used in operating system. | (2 marks) | | | n) | n) Outline any two differences between pre-emptive scheduling and non-preemptive | | | | | scheduling. | (4 marks) | | ## **SECTION B [60 MARKS]** Attempt **ONLY THREE** Questions in this Section. #### **Question 1** | a) | Describe any four functions of file management. | (8 marks) | |----|---|-----------| | b) | Describe any four functions performed by the operating system. | (8 marks) | | c) | Describe any three process states | (6 marks) | #### Question 2 - a) Define the term a *process* as used in operating systems. b) Describe the five-state transition model (2 marks) (10 marks) - c) Given three processes P₁, P₂ and P₃ with burst times indicated against each as shown below: | Process | Burst Time | |----------------|------------| | P ₁ | 24 | | P_2 | 3 | | P_3 | 3 | Suppose the processes arrive in the order P_2 , P_1 and P_3 . Determine the average waiting time if the scheduling follows: ## **OPERATING SYSTEMS** | i) First Come First Served Algorithmii) Round Robin Algorithm with quantum time of 4. | (4 marks)
(4 marks) | |--|--| | Question 3 a) Describe any three memory placement algorithms. b) Describe the difference between contiguous memory allocation and fix memory allocation schemes. c) Identify and describe the Components of the I/O Subsystem d) Define segmentation as used in memory management. | (6 marks) ed partition (4 marks) (8 marks) (2 marks) | | Question 4 a) Describe any three conditions necessary for deadlocks to occur. b) Describe any four strategies for dealing with deadlocks c) Define each of the terms; latency, transfer time and seek time as applied | (6 marks)
(8 marks)
ed to hard disk
(6 marks) | | Question 5 a) Briefly explain the following types of devices i) Dedicated Devices ii) Shared Devices and iii) Virtual Devices | (2 marks @) | | b) Explain three factors that determine Access Time. c) Describe the following terms as used with hard disks: i) Disk platter ii) Disk arm iii) Track iv) Sector | (6 marks) (2 marks) (2 marks) (2 marks) (2 marks) | | Question 6 a) Describe the components of the I/O Subsystem b) State three conditions that may result into Switching Process c) Distinguish between contiguous and non-contiguous memory | (8 marks)
(6 marks)
(4 marks) | **END**